Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,3-Bis(2-methoxyphenyl)thiourea

Jason van Rooyen, Richard Betz* and Bernardus J. A. M. van Brecht

Nelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa

Correspondence e-mail: richard.betz@webmail.co.za

Received 28 September 2011; accepted 4 October 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.090; data-to-parameter ratio = 18.7.

In the title compound, $C_{15}H_{16}N_2O_2S$, the N–C(=S) bond lengths are indicative of the presence of amide-type resonance. The dihedral angles between the thiourea unit and the attached aromatic rings are 59.80 (5) and 73.41 (4)° while the dihedral angle between the rings is 56.83 (4)°. In the crystal, inversion dimers linked by pairs of N–H···S hydrogen bonds occur. An N–H··· π interaction is observed for the second amino group. The shortest centroid–centroid distance between two aromatic systems is 4.0958 (8) Å.

Related literature

For related structures, see: Shashidhar *et al.* (2006); Muhammed *et al.* (2007); Kuan & Tiekink (2007); Srivastava *et al.* (2010). For further synthetic details, see: Voss & Walter (1968). For graph-set analysis of hydrogen bonds, see: Etter *et al.* (1990); Bernstein *et al.* (1995). For general information about coordination chemistry, see: Gade (1998). Structures containing similar bond lengths were retrieved from the Cambridge Structural Database (Allen, 2002).

Experimental

Crystal data $C_{15}H_{16}N_2O_2S$ $M_r = 288.36$

Monoclinic, C2/ca = 14.3187 (8) Å b = 12.8628 (7) Å c = 16.1168 (10) Å $\beta = 103.790 (3)^{\circ}$ $V = 2882.8 (3) \text{ Å}^{3}$ Z = 8

Data collection

Bruker SMART CCD diffractometer 10474 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.090$ S = 1.053567 reflections 191 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C11-C16 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N2 - H72 \cdots S1^{i} \\ N1 - H71 \cdots Cg1^{ii} \end{array}$	0.831 (16) 0.782 (16)	2.506 (17) 2.967 (18)	3.3343 (12) 3.5127 (13)	174.3 (14) 129.1 (14)
6	L 1. (")	. 1 . 1		

Symmetry codes: (i) $-x, y, -z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank Dr Marc van der Vyver for helpful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6427).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.
- Kuan, F. S. & Tiekink, E. R. T. (2007). Acta Cryst. E63, 04692.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Muhammed, N., Zia-ur-Rehman, Ali, S. & Meetsma, A. (2007). Acta Cryst. E63, 0634–0635.
- Shashidhar, Thiruvenkatam, V., Shivashankar, S. A., Halli, M. B. & Guru Row, T. N. (2006). *Acta Cryst.* E**62**, o1518–o1519.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Srivastava, P. C., Dwivedi, S., Singh, V. & Butcher, R. J. (2010). Polyhedron, 29, 2202–2212.
- Voss, J. & Walter, W. (1968). Justus Liebigs Ann. Chem. 716, 209-211.

Mo $K\alpha$ radiation

 $0.42 \times 0.36 \times 0.14 \text{ mm}$

3567 independent reflections

2765 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.23 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.058$

refinement $\Delta \rho_{\text{max}} = 0.25 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Acta Cryst. (2011). E67, o2889 [doi:10.1107/S1600536811040852]

1,3-Bis(2-methoxyphenyl)thiourea

J. van Rooyen, R. Betz and B. J. A. M. van Brecht

Comment

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining different donor atoms, a molecular set-up to accomodate a large variety of metal centers of variable Lewis acidity is at hand. In this aspect, the title compound, 1,3-bis(2-methoxyphenyl)thiourea, (I), seemed of interest due to its possible use as a strictly neutral or, depending on the pH value, as an anionic or cationic ligand. In addition, due to the set-up of its functional groups, it may act as mono- or multidentate ligand offering the possibility to create chelate rings of various size. The intriguing combination of a secondary amino group, a thioketo group as well as methylether groups classifies the title compound as a highly versatile ligand. To enable comparative studies in terms of bond lengths and angles in envisioned coordination compounds, we determined the molecular and crystal structure of the title compound. Information about the crystal structure of 1,3-bis(4-methoxyphenyl)thiourea (Shashidhar *et al.*, 2006), 1,3bis(2-methylphenyl)thiourea, (Muhammed *et al.*, 2007; Kuan & Tiekink, 2007) and 1,3-bis(phenyl)thiourea (Srivastava *et al.*, 2010) is available in the literature.

N–C=S bond lengths (d_{N-C} : 1.3469 (15) Å and 1.3488 (16) Å, respectively) are in good agreement with values deposited for comparable compounds with the Cambridge Structural Database (Allen, 2002) and are indicative of admide-type resonance between the atoms of this entity. This finding is further corroborated by the planarity of the S=CN₂ moiety (r.m.s. of all fitted atoms = 0.0015 Å). The aromatic substituents on the nitrogen atom adopt *syn* and *anti* conformation with respect to the sulfur atom. The least-squares planes defined by the carbon atoms of the respective phenyl rings enclose an angle of 56.83 (4) ° while the individual planes defined by the phenyl rings intersect with the least-squares plane defined by the atoms of the central S=CN₂ moiety at angles of 59.80 (5) ° and 73.41 (4) ° (Fig. 1, Fig. 2).

In the crystal, the hydrogen atoms of the secondary amine groups participate in two different types of intermolecular interactions. While one of the protons is part of a classical hydrogen bond of the N–H…S type, the other amine group's hydrogen atom forms a contact to one of the aromatic systems. The classical hydrogen bonds connect the molecules to centrosymmetric dimers orientated approximately perpendicular to the crystallographic *b* axis. In terms of graph-set analysis (Etter *et al.*, 1990; Bernstein *et al.*, 1995), the descriptor for the classical hydrogen bonds is $R^2_2(8)$ on the unitary level. The shortest intercentroid distance between two aromatic systems was measured at 4.0958 (8) Å (Fig. 3).

The packing of the title compound in the crystal structure is shown in Figure 4.

Experimental

The title compound was prepared upon reacting Lawesson's reagent with the corresponding amide in analogy to a published procedure (Voss & Walter, 1968).

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$. The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the *SHELX* program suite (Sheldrick, 2008), with U(H) set to $1.5U_{eq}(C)$. Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Figures

Fig. 1. The molecular structure of the title compound, with anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2. Statistical distribution of N(H)-C(=S) bond lengths in thiourea-derived amides (data based on CSD search including all deposited crystal structures up to August 2011).

Fig. 4. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).

1,3-Bis(2-methoxyphenyl)thiourea

Crystal data	
$C_{15}H_{16}N_2O_2S$	Z = 8
$M_r = 288.36$	F(000) = 1216
Monoclinic, C2/c	$D_{\rm x} = 1.329 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -C 2yc	Mo K α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 14.3187 (8) Å	$\mu = 0.23 \text{ mm}^{-1}$
b = 12.8628 (7) Å	T = 173 K
c = 16.1168 (10) Å	Plate, colourless
$\beta = 103.790 \ (3)^{\circ}$	$0.42 \times 0.36 \times 0.14 \text{ mm}$
$V = 2882.8 (3) \text{ Å}^3$	

Data collection

Bruker SMART CCD diffractometer	2765 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.058$
graphite	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
ϕ and ω scans	$h = -16 \rightarrow 19$
10474 measured reflections	$k = -14 \rightarrow 17$
3567 independent reflections	$l = -17 \rightarrow 21$

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0437P)^2 + 0.1621P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{max} < 0.001$
$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.23 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	-0.01726 (2)	0.20091 (3)	0.11713 (2)	0.02289 (10)
01	0.09218 (7)	0.42621 (7)	-0.03050 (6)	0.0323 (2)
O2	0.24916 (6)	0.20317 (7)	0.36118 (6)	0.0291 (2)
N1	0.14650 (8)	0.28483 (9)	0.09695 (7)	0.0251 (3)

H71	0.1955 (12)	0.3130 (13)	0.1153 (10)	0.036 (5)*
N2	0.12052 (7)	0.29144 (9)	0.23257 (7)	0.0232 (2)
H72	0.0931 (11)	0.2653 (11)	0.2676 (10)	0.028 (4)*
C1	0.08967 (8)	0.26236 (9)	0.15016 (8)	0.0197 (3)
C11	0.12847 (8)	0.25261 (10)	0.00981 (8)	0.0223 (3)
C12	0.10350 (9)	0.32650 (10)	-0.05553 (8)	0.0238 (3)
C13	0.09201 (9)	0.29468 (11)	-0.14003 (9)	0.0288 (3)
H13	0.0771	0.3444	-0.1849	0.035*
C14	0.10227 (9)	0.19063 (12)	-0.15889 (9)	0.0307 (3)
H14	0.0929	0.1695	-0.2168	0.037*
C15	0.12589 (10)	0.11744 (11)	-0.09458 (9)	0.0311 (3)
H15	0.1324	0.0463	-0.1079	0.037*
C16	0.14008 (9)	0.14937 (11)	-0.00994 (9)	0.0281 (3)
H16	0.1579	0.0998	0.0347	0.034*
C17	0.06484 (12)	0.50262 (12)	-0.09648 (10)	0.0408 (4)
H171	0.1170	0.5116	-0.1257	0.061*
H172	0.0523	0.5689	-0.0712	0.061*
H173	0.0066	0.4796	-0.1377	0.061*
C21	0.20704 (8)	0.34620 (10)	0.26996 (8)	0.0215 (3)
C22	0.27304 (8)	0.30070 (10)	0.33908 (8)	0.0218 (3)
C23	0.35552 (9)	0.35490 (11)	0.37961 (8)	0.0257 (3)
H23	0.3997	0.3251	0.4272	0.031*
C24	0.37282 (9)	0.45274 (11)	0.35004 (9)	0.0287 (3)
H24	0.4298	0.4889	0.3770	0.034*
C25	0.30840 (10)	0.49852 (10)	0.28199 (9)	0.0299 (3)
H25	0.3210	0.5655	0.2623	0.036*
C26	0.22491 (9)	0.44499 (11)	0.24273 (9)	0.0267 (3)
H26	0.1797	0.4765	0.1968	0.032*
C27	0.31264 (10)	0.15497 (12)	0.43256 (10)	0.0358 (3)
H271	0.3761	0.1461	0.4205	0.054*
H272	0.2869	0.0869	0.4430	0.054*
H273	0.3185	0.1989	0.4832	0.054*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01794 (15)	0.03006 (19)	0.02002 (17)	-0.00105 (12)	0.00324 (11)	-0.00245 (13)
O1	0.0424 (6)	0.0268 (5)	0.0263 (5)	0.0036 (4)	0.0056 (4)	0.0003 (4)
O2	0.0276 (5)	0.0279 (5)	0.0269 (5)	-0.0045 (4)	-0.0032 (4)	0.0055 (4)
N1	0.0220 (5)	0.0345 (7)	0.0186 (6)	-0.0060 (5)	0.0046 (4)	-0.0010 (5)
N2	0.0198 (5)	0.0333 (6)	0.0162 (5)	-0.0042 (4)	0.0035 (4)	0.0021 (5)
C1	0.0190 (5)	0.0199 (6)	0.0193 (6)	0.0044 (4)	0.0026 (5)	0.0035 (5)
C11	0.0195 (5)	0.0302 (7)	0.0183 (6)	-0.0015 (5)	0.0065 (5)	-0.0004 (6)
C12	0.0218 (6)	0.0275 (7)	0.0225 (7)	0.0000 (5)	0.0059 (5)	-0.0017 (5)
C13	0.0274 (6)	0.0381 (8)	0.0206 (7)	0.0024 (6)	0.0052 (5)	0.0017 (6)
C14	0.0256 (6)	0.0439 (9)	0.0233 (7)	-0.0013 (6)	0.0072 (5)	-0.0096 (6)
C15	0.0312 (7)	0.0299 (8)	0.0354 (8)	-0.0016 (5)	0.0144 (6)	-0.0063 (6)
C16	0.0277 (6)	0.0292 (7)	0.0296 (8)	-0.0007 (5)	0.0112 (5)	0.0018 (6)

C17	0.0526 (9)	0.0313 (8)	0.0366 (9)	0.0041 (7)	0.0067 (7)	0.0071 (7)
C21	0.0201 (5)	0.0267 (7)	0.0181 (6)	-0.0015 (5)	0.0056 (5)	-0.0035 (5)
C22	0.0225 (6)	0.0226 (6)	0.0205 (6)	-0.0003 (5)	0.0056 (5)	-0.0025 (5)
C23	0.0230 (6)	0.0308 (8)	0.0214 (7)	0.0010 (5)	0.0016 (5)	-0.0049 (6)
C24	0.0267 (6)	0.0289 (8)	0.0306 (8)	-0.0052 (5)	0.0074 (6)	-0.0120 (6)
C25	0.0367 (7)	0.0210 (7)	0.0342 (8)	-0.0026 (5)	0.0129 (6)	-0.0032 (6)
C26	0.0293 (6)	0.0263 (7)	0.0246 (7)	0.0035 (5)	0.0067 (5)	-0.0002 (6)
C27	0.0371 (7)	0.0326 (8)	0.0321 (8)	0.0016 (6)	-0.0027 (6)	0.0081 (7)
Geometric par	rameters (Å, °)					
S1—C1		1.6923 (12)	C15-	-H15	0.9	500
O1—C12		1.3658 (16)	C16-	—H16	0.9	500
O1—C17		1.4324 (17)	C17-	—H171	0.9	800
O2—C22		1.3695 (15)	C17-	—H172	0.9	800
O2—C27		1.4266 (16)	C17-	—Н173	0.9	800
N1-C1		1.3469 (15)	C21-	C26	1.3	879 (19)
N1-C11		1.4275 (16)	C21-	C22	1.4	053 (17)
N1—H71		0.782 (16)	C22-	C23	1.3	928 (17)
N2—C1		1.3488 (16)	C23-	C24	1.3	887 (19)
N2-C21		1.4277 (15)	C23-	-H23	0.9	500
N2—H72		0.831 (16)	C24-	C25	1.3	85 (2)
C11—C16		1.3848 (18)	C24-	-H24	0.9	500
C11—C12		1.4003 (18)	C25-	C26	1.3	939 (19)
C12—C13		1.3937 (19)	C25-	-H25	0.9	500
C13—C14		1.388 (2)	C26-	-H26	0.9	500
C13—H13		0.9500	C27-	—H271	0.9	800
C14—C15		1.381 (2)	C27-	—H272	0.9	800
C14—H14		0.9500	C27-	—Н273	0.9	800
C15—C16		1.392 (2)				
C12—O1—C1	7	117.11 (11)	01—	-C17—H172	109	0.5
C22—O2—C2	7	117.21 (10)	H171	I—C17—H172	109	0.5
C1—N1—C11		124.69 (11)	01–	-C17—H173	109	0.5
C1—N1—H71		118.9 (12)	H171	I—C17—H173	109	0.5
C11—N1—H7	1	116.2 (12)	H172	2—С17—Н173	109	0.5
C1—N2—C21		126.87 (11)	C26-		119	9.49 (11)
C1—N2—H72		117.3 (10)	C26-		121	.67 (11)
C21—N2—H7	2	114.6 (10)	C22-		118	3.75 (11)
N1—C1—N2		117.50 (11)	O2—	-C22—C23	124	.96 (12)
N1—C1—S1		122.59 (10)	O2—	-C22—C21	115	5.17 (11)
N2-C1-S1		119.91 (9)	C23-		119	9.87 (12)
C16—C11—C	12	120.07 (12)	C24-		119	9.56 (12)
C16—C11—N	1	120.07 (12)	C24-	—С23—Н23	120	0.2
C12—C11—N	1	119.79 (12)	C22-	—С23—Н23	120	0.2
O1-C12-C1	3	124.73 (12)	C25-	C24C23	121	.17 (12)
01—C12—C1	1	116.24 (11)	C25-	—С24—Н24	119	9.4
С13—С12—С	11	119.02 (13)	C23-		119	0.4
С14—С13—С	12	120.20 (13)	C24-	C25C26	119	0.12 (13)
С14—С13—Н	13	119.9	C24-	—С25—Н25	120	0.4

C12—C13—H13	119.9	С26—С25—Н25	120.4
C15—C14—C13	120.84 (13)	C21—C26—C25	120.76 (13)
C15—C14—H14	119.6	С21—С26—Н26	119.6
C13—C14—H14	119.6	С25—С26—Н26	119.6
C14—C15—C16	119.12 (13)	O2—C27—H271	109.5
C14—C15—H15	120.4	O2—C27—H272	109.5
C16—C15—H15	120.4	H271—C27—H272	109.5
C11—C16—C15	120.70 (13)	O2—C27—H273	109.5
C11—C16—H16	119.6	H271—C27—H273	109.5
C15—C16—H16	119.6	H272—C27—H273	109.5
O1—C17—H171	109.5		
C11—N1—C1—N2	174.85 (11)	N1-C11-C16-C15	-177.83 (11)
C11—N1—C1—S1	-5.62 (18)	C14-C15-C16-C11	1.57 (19)
C21—N2—C1—N1	1.47 (19)	C1—N2—C21—C26	60.94 (18)
C21—N2—C1—S1	-178.08 (10)	C1—N2—C21—C22	-122.51 (14)
C1—N1—C11—C16	-71.93 (16)	C27—O2—C22—C23	1.70 (18)
C1—N1—C11—C12	111.13 (14)	C27—O2—C22—C21	-178.28 (11)
C17—O1—C12—C13	1.17 (18)	C26—C21—C22—O2	-179.98 (11)
C17—O1—C12—C11	-178.84 (12)	N2-C21-C22-O2	3.39 (16)
C16-C11-C12-O1	179.11 (11)	C26—C21—C22—C23	0.04 (18)
N1-C11-C12-O1	-3.95 (16)	N2-C21-C22-C23	-176.59 (11)
C16-C11-C12-C13	-0.90 (17)	O2—C22—C23—C24	178.63 (11)
N1-C11-C12-C13	176.04 (11)	C21—C22—C23—C24	-1.39 (19)
O1-C12-C13-C14	-177.99 (12)	C22—C23—C24—C25	1.41 (19)
C11—C12—C13—C14	2.02 (18)	C23—C24—C25—C26	-0.1 (2)
C12—C13—C14—C15	-1.4 (2)	C22-C21-C26-C25	1.34 (19)
C13-C14-C15-C16	-0.4 (2)	N2-C21-C26-C25	177.86 (12)
C12—C11—C16—C15	-0.89 (18)	C24—C25—C26—C21	-1.3 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H72…S1 ⁱ	0.831 (16)	2.506 (17)	3.3343 (12)	174.3 (14)
N1—H71…Cg1 ⁱⁱ	0.782 (16)	2.967 (18)	3.5127 (13)	129.1 (14)
Symmetry codes: (i) $-x$, y , $-z+1/2$; (ii) $-x+1/2$, -y+1/2, -z.			

Fig. 1

Fig. 4

